In [ ]:
import numpy as np
# Creating an array
array = np.array([1, 2, 3, 4])
# Perform arithmetic operations
array = array * 2
# Matrix multiplication
matrix1 = np.array([[1, 2], [3, 4]])
matrix2 = np.array([[5, 6], [7, 8]])
result = np.dot(matrix1, matrix2)
result
Out[ ]:
array([[19, 22],
       [43, 50]])
In [ ]:
import pandas as pd
data = {'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35]}
df = pd.DataFrame(data)
ages = df['Age']
filtered_df = df[df['Age'] > 25]
filtered_df
Out[ ]:
Name Age
1 Bob 30
2 Charlie 35
In [ ]:
import matplotlib.pyplot as plt
x = [1, 2, 3, 4]
y = [10, 20, 25, 30]
plt.plot(x, y)
plt.xlabel('X Axis')
plt.ylabel('Y Axis')
plt.title('Sample Line Plot')
plt.show()
No description has been provided for this image
In [ ]:
from scipy import optimize
def f(x):
    return x**2 + 5*np.sin(x)
result = optimize.minimize(f, x0=0)
print(result)
  message: Optimization terminated successfully.
  success: True
   status: 0
      fun: -3.2463942726915387
        x: [-1.111e+00]
      nit: 5
      jac: [-2.980e-08]
 hess_inv: [[ 1.544e-01]]
     nfev: 12
     njev: 6
In [ ]:
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
iris = datasets.load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
model = LogisticRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))
Accuracy: 0.9333333333333333
In [ ]:
import torch
a = torch.tensor([1.0, 2.0, 3.0])
b = torch.tensor([4.0, 5.0, 6.0])
result = a + b
print(result)
tensor([5., 7., 9.])
In [ ]:
import numpy as np
# Creating an array from a list
arr = np.array([1, 2, 3, 4])
print(arr)
[1 2 3 4]
In [ ]:
zeros_arr = np.zeros((3, 3))
print(zeros_arr)
[[0. 0. 0.]
 [0. 0. 0.]
 [0. 0. 0.]]
In [ ]:
ones_arr = np.ones((2, 2))
print(ones_arr)
[[1. 1.]
 [1. 1.]]
In [ ]:
arr = np.arange(0, 10, 2)
print(arr)
[0 2 4 6 8]
In [ ]:
arr = np.linspace(0, 1, 5)
print(arr)
[0.   0.25 0.5  0.75 1.  ]
In [ ]:
arr = np.array([1, 2, 3, 4, 5, 6])
reshaped_arr = arr.reshape((2, 3))
print(reshaped_arr)
[[1 2 3]
 [4 5 6]]
In [ ]:
arr = np.array([[1, 2], [3, 4]])
transposed_arr = np.transpose(arr)
print(transposed_arr)
[[1 3]
 [2 4]]
In [ ]:
arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
concatenated_arr = np.concatenate((arr1, arr2))
print(concatenated_arr)
[1 2 3 4 5 6]
In [ ]:
arr = np.array([[1, 2, 3], [4, 5, 6]])
sum_arr = np.sum(arr)
print(sum_arr)
21
In [ ]:
arr = np.array([1, 2, 3, 4, 5])
mean_val = np.mean(arr)
print(mean_val)
3.0
In [ ]:
arr = np.array([1, 2, 3, 4, 5])
max_val = np.max(arr)
min_val = np.min(arr)
print(f"Max: {max_val}, Min: {min_val}")
Max: 5, Min: 1
In [ ]:
arr = np.array([1, 4, 9, 16])
sqrt_arr = np.sqrt(arr)
print(sqrt_arr)
[1. 2. 3. 4.]
In [ ]:
arr1 = np.array([1, 2])
arr2 = np.array([3, 4])
dot_product = np.dot(arr1, arr2)
print(dot_product)
11
In [ ]:
arr = np.array([1, 2, 3, 4, 5])
std_val = np.std(arr)
print(std_val)
1.4142135623730951
In [ ]:
var_val = np.var(arr)
print(var_val)
2.0
In [ ]:
arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
correlation = np.corrcoef(arr1, arr2)
print(correlation)
[[1. 1.]
 [1. 1.]]
In [ ]:
import pandas as pd
series = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
print(series)
a    1
b    2
c    3
d    4
dtype: int64
In [ ]:
data = {'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35]}
df = pd.DataFrame(data)
print(df)
      Name  Age
0    Alice   25
1      Bob   30
2  Charlie   35
In [ ]:
print(df.loc[0])
Name    Alice
Age        25
Name: 0, dtype: object
In [ ]:
print(df.iloc[1])
Name    Bob
Age      30
Name: 1, dtype: object
In [ ]:
print(df.at[0, 'Name'])
Alice
In [ ]:
print(df.head(2))
    Name  Age
0  Alice   25
1    Bob   30
In [ ]:
print(df.tail(1))
      Name  Age
2  Charlie   35
In [ ]:
df = df.drop(columns=['Age'])
print(df)
      Name
0    Alice
1      Bob
2  Charlie
In [ ]:
df = df.rename(columns={'Name': 'Full Name'})
print(df)
  Full Name
0     Alice
1       Bob
2   Charlie
In [ ]:
df = pd.DataFrame({'Name': ['Alice', 'Bob', None], 'Age': [25, None, 35]})
print(df.isnull())
    Name    Age
0  False  False
1  False   True
2   True  False
In [ ]:
df_filled = df.fillna({'Name': 'Unknown', 'Age': 0})
print(df_filled)
      Name   Age
0    Alice  25.0
1      Bob   0.0
2  Unknown  35.0
In [ ]:
df_clean = df.dropna()
print(df_clean)
    Name   Age
0  Alice  25.0
In [ ]:
data = {'Name': ['Alice', 'Bob', 'Charlie', 'Alice'], 'Age': [25, 30, 35, 28]}
df = pd.DataFrame(data)
grouped = df.groupby('Name').mean()
print(grouped)
          Age
Name         
Alice    26.5
Bob      30.0
Charlie  35.0
In [ ]:
df = pd.DataFrame({'Age': [25, 30, 35], 'Score': [85, 90, 95]})
mean_vals = df.mean()
print(mean_vals)
Age      30.0
Score    90.0
dtype: float64
In [ ]:
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
import seaborn as sns
import matplotlib.pyplot as plt
In [ ]:
from sklearn.datasets import load_iris
# Load the iris dataset
iris = load_iris()
X = iris.data  # Features
y = iris.target  # Target (species)
# Convert it into a DataFrame for better visualization
iris_df = pd.DataFrame(X, columns=iris.feature_names)
iris_df['species'] = y
print(iris_df.head())
   sepal length (cm)  sepal width (cm)  petal length (cm)  petal width (cm)  \
0                5.1               3.5                1.4               0.2   
1                4.9               3.0                1.4               0.2   
2                4.7               3.2                1.3               0.2   
3                4.6               3.1                1.5               0.2   
4                5.0               3.6                1.4               0.2   

   species  
0        0  
1        0  
2        0  
3        0  
4        0  
In [ ]:
# Split the data into 80% training and 20% testing
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
In [ ]:
# Create a KNN classifier with K=3
knn = KNeighborsClassifier(n_neighbors=3)
# Train the model using the training data
knn.fit(X_train, y_train)
Out[ ]:
KNeighborsClassifier(n_neighbors=3)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
KNeighborsClassifier(n_neighbors=3)
In [ ]:
# Predict the target values (species) for the test set
y_pred = knn.predict(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy * 100:.2f}%")
# Confusion Matrix
conf_matrix = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print(conf_matrix)
# Classification Report
print("Classification Report:")
print(classification_report(y_test, y_pred))
Accuracy: 100.00%
Confusion Matrix:
[[10  0  0]
 [ 0  9  0]
 [ 0  0 11]]
Classification Report:
              precision    recall  f1-score   support

           0       1.00      1.00      1.00        10
           1       1.00      1.00      1.00         9
           2       1.00      1.00      1.00        11

    accuracy                           1.00        30
   macro avg       1.00      1.00      1.00        30
weighted avg       1.00      1.00      1.00        30

In [ ]:
# Plot the confusion matrix
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=iris.target_names, yticklabels=iris.target_names)
plt.xlabel('Predicted')
plt.ylabel('True')
plt.title('Confusion Matrix of KNN Model')
plt.show()
No description has been provided for this image