A classification workflow to predict rainfall (“Rain” vs. “no rain”) from meteorological features.
<table><tbody><tr><td data-start=\"6925\" data-end=\"6956\" data-col-size=\"sm\"><strong data-start=\"6927\" data-end=\"6942\"></strong></td></tr></tbody></table><table><tbody><tr><td data-start=\"6956\" data-end=\"7529\" data-col-size=\"xl\">The notebook loads <code data-start=\"6977\" data-end=\"7004\">weather_forecast_data.csv</code> with pandas and inspects its structure (6 columns: Temperature, Humidity, Wind_Speed, Cloud_Cover, Pressure, Rain) over 2,500 entries It prints summary statistics via <code data-start=\"7248\" data-end=\"7261\">.describe()</code> and the first few rows to understand distribution and class balance The target <code data-start=\"7417\" data-end=\"7423\">Rain</code> is label-encoded, and numeric features are standardized with <code data-start=\"7485\" data-end=\"7501\">StandardScaler</code> before model development.</td></tr></tbody></table>